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In this work, eight different scoring functions have been combined with the aim of improving
the prediction of protein-ligand binding conformations and affinities. The obtained scores were
analyzed using multivariate statistical methods to generate expressions, with the ability (1)
to select the best candidate between different docked conformations of an inhibitor (MultiSelect)
and (2) to quantify the protein-ligand binding affinity (MultiScore). By use of the docking
program GOLD, 40 different inhibitors were docked into the active site of three matrix
metalloproteinases (MMP’s), yielding a total of 120 enzyme-inhibitor complexes. For each
complex, a single conformation of the inhibitor was selected using principal component analysis
(PCA) for the scores obtained by the eight functions SCORE, LUDI, GRID, PMF_Score, D_Score,
G_Score, ChemScore, and F_Score. Binding affinities were estimated based on partial least-
squares projections onto latent structures (PLS) on the eight scores of each selected inhibitor
conformation. By use of this procedure, R2 ) 0.78 and Q2 ) 0.78 were obtained when comparing
experimental and calculated binding affinities. MultiSelect was evaluated by applying the same
method for selecting docked conformations for 18 different protein-ligand complexes of known
three-dimensional structure. In all cases, the selected ligand conformations were found to be
very similar to the experimentally determined ligand conformations. A more general evaluation
of MultiScore was performed using a set of 120 different protein-ligand complexes for which
both the three-dimensional structures and the binding affinities were known. This approach
allowed an evaluation of MultiScore independently of MultiSelect. The generality of the method
was verified by obtaining R2 ) 0.68 and Q2 ) 0.67, when comparing calculated and experimental
binding affinities for the 120 X-ray structures. In all cases, LUDI, SCORE, GRID, and F_Score
were included as important functions, whereas the fifth function was PMF_Score and
ChemScore for the MMP and X-ray models, respectively.

Introduction
The ability to position a ligand in the active site of a

protein (docking) and calculate the binding affinity
(scoring) is a very important step in the process of
structure-based drug design. The methods have to be
fast, reliable, and accurate to be of any value in the
screening of large databases. Docking programs based
on various principles have been developed over the
years, and while not yet perfect, their performance is
improving.1 Early docking programs treated both the
receptor and ligand as completely rigid structures,
which of course is a severe limitation of the method
because the receptor-bound ligand conformation often
is not known. In more recently developed docking
programs, flexibility is taken into account in various
ways. Some programs rely on the principle of building
the ligand into the binding site by incrementally posi-
tioning fragments of the ligand. Others use simulated
annealing to obtain the optimal ligand conformations,

and still others use genetic algorithms.1 These programs
generally allow conformational flexibility of the ligand,
while flexibility of the protein is more difficult to take
into consideration. The importance of this feature is
highlighted by the various examples of protein confor-
mational changes upon ligand binding.2 In short, the
optimal docking procedure has to be fast, generate
reliable ligand geometries, rank the ligand conforma-
tions correctly, and thereby, estimate the binding
energy.

The concept of predicting protein-ligand binding
affinities has been approached by different methods.
Some of the methods are relatively simple and fast,
while others are more computationally demanding but
often more accurate in their predictions. The choice of
scoring function relies on the amount of information one
needs to generate. If the purpose is virtual screening of
large databases, it is necessary to use fast methods,
whereas accurate methods like free energy perturbation
(FEP) would be of no use in that context.3,4 In contrast,
the knowledge-based methods are generally fast and
perfectly suited for this purpose. However, these func-
tions are generally less accurate, and therefore, the

* To whom correspondence should be addressed. Phone: +45 35 30
63 78. Fax: +45 35 30 60 40. E-mail: fsj@dfh.dk.

† Royal Danish School of Pharmacy.
‡ University of Wales College of Medicine.
§ Novo Nordisk A/S.

2333J. Med. Chem. 2001, 44, 2333-2343

10.1021/jm001090l CCC: $20.00 © 2001 American Chemical Society
Published on Web 06/08/2001



results obtained are often a compromise between speed
and accuracy.

This work was performed as part of a project aiming
to identify strong and selective inhibitors of matrix
metalloproteinases (MMP’s). MMP’s belong to a very
important enzyme family, which has been found to
participate in various disease states. In the past few
years, these enzymes have been the targets for extensive
research concerning arthritis, cancer, and osteoporosis.5
In these diseases, an imbalance is observed between
MMP’s and their natural inhibitors (TIMP’s). Presently,
17 human MMP’s are known, and they are believed to
have different functions in relation to both health and
disease states. It is not quite clear, though, which of
these enzymes are responsible for the observed disease
states and how they interact with each other biologi-
cally. Design of selective inhibitors for individual MMP’s
would provide a pharmacological tool to help understand
the involvement of different members of this enzyme
family in various diseases. In this context, the structural
knowledge of the MMP’s is very useful,6 and in the
search for selective inhibitors, it would be of outmost
importance to be able to predict both ligand conforma-
tion and binding affinity. Besides the demonstration of
the ability to select a reliable inhibitor conformation
(MultiSelect), the selected MMP inhibitors are used for
development of a method to quantify protein-ligand
interactions (MultiScore) using multivariate statistical
analysis. Most of this work was done with MMP’s, but
to evaluate the generality of the methods, other protein-
ligand complexes with known three-dimensional struc-
tures were considered as well.

Background for the Development of
Multivariate Selection

The main purpose of docking programs is to identify
favorable conformations of the ligand, but the scoring
functions implemented in the docking programs do
seldomly perform satisfactorily to make quantitative
predictions of the binding affinity.7 Therefore, different
scoring functions, based on various principles, have been
developed in order to predict the binding affinity more
precisely. Still, their performance relies on the ligand
being correctly positioned in the active site, and so they
strongly depend on the performance of the docking
algorithm. Although the ranking of conformations could
not be used directly as a measure of the binding affinity,
it has been found that a ligand conformation corre-
sponding closely to the bioactive conformation very often
is found among the solutions suggested by the docking
program.7,8 Therefore, the challenge is to identify the
most favorable ligand conformation and to estimate a
reliable value for the binding to the protein.

The docking of a ligand results in a series of possible
ligand conformations from which the bioactive confor-
mation has to be selected. Hoffmann et al.9 have
introduced a two-stage method in an attempt to rerank
the inhibitor conformations generated by a docking
program. The reranking includes energy minimization,
which is quite a time-consuming procedure, and it is
preferable to circumvent this step. Very recently, Vieth
et al. have described an approach that relies on
the statistical determination of the docking mode
(DoMCoSAR), which also involves docking in two

stages.10 The MultiSelect method described in this paper
circumvents the second docking step and is able to select
a single ligand conformation. The method was imple-
mented using a set of MMP-inhibitor complexes,11,12

where the three-dimensional structure of the complexes
could be deduced from experimentally determined struc-
tures of MMP-inhibitor complexes (presently approxi-
mately 40 structures in the RCSB Protein Data Bank).13

Because no structures of the complexes are available,
it was not possible to evaluate directly the selection
procedure based on this experiment. Therefore, 18
protein-ligand complexes of known three-dimensional
structures were used for evaluation. The conformation
selected as the bioactive conformation by MultiSelect
was compared to the ligand conformation found in the
X-ray structures.

Background for the Development of
Multivariate Scoring

The free energy of binding can be described thermo-
dynamically by the equation

It is known that ∆H and ∆S may vary due to different
experimental conditions (pH, temperature, ionic
strength). This is a problem if the experimental values
for binding affinity are determined using different
experimental conditions. However, these variations in
experimental conditions are most often ignored when
scoring functions for estimating ∆G are considered.14,15

The free energy of binding, ∆G, relates to the binding
constant Ki by the equation

Several different methods for estimating the binding
affinity between a ligand and a protein are available.14,15

All scoring functions encountered in this work rely on
additivity of terms to obtain a measure for the free
energy of binding. The intention is not to fully review
the scoring functions, but a short overview of their
different underlying principles will be presented. Only
fast-performing scoring functions are considered, and
therefore, no attention is paid to the scoring functions
relying on more computational-intensive principles.14,15

The scoring functions considered in this work can all
be described as either force-field-based or knowledge-
based scoring functions. Of these, the empirical func-
tions are especially very useful for fast screening. The
major drawback is the uncertainties associated with
thesesone could in general only expect the functions
to perform well on complexes similar to those used for
development of the functions. MultiScore was developed
using a specific example with 120 MMP-inhibitor
complexes, and in an attempt to develop a more gener-
ally applicable method, a diverse set of 120 protein-
ligand complexes was considered. Thus, the aim of this
work is to obtain an improved estimate for binding
affinity by combining results from different scoring
functions using multivariate statistical analysis.

Several of the scoring functions considered in this
work are based on the work of Böhm,16,17 who intro-
duced the possibility of estimating binding affinities by
summing up parameters that describe different types

∆G ) ∆H - T∆S

∆G ) - RT ln Ki
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of protein-ligand interactions. The scoring functions
LUDI,16,17 SCORE,18 ChemScore,19 and F_Score8 rely on
this principle. Other methods like GOLD,7 G_Score,7
D_Score,20 and GRID21-24 are force-field-based func-
tions. The use of GRID as a scoring function is based
on describing the ligand as consisting of different probes
that each resemble an atom or a functional group. The
interaction of each probe with the protein is calculated,
and the binding energy is the sum of the probe inter-
action energies. The PMF_Score25 is a knowledge-based
function that is not dependent on experimental Ki values
but relies on derivation of distance-dependent Helm-
holtz free interaction energies of protein-ligand atom
pairs. The scoring functions estimate the free energy of
binding by division into contributions from several
terms (hydrogen bonds, hydrophobic interactions, ionic
interactions, etc.). The main distinction between the
functions is due to the different weighting of these
terms, and especially regarding the empirical functions,
these would presumably be most appropriate for ap-
plication to problems similar to those used for develop-
ment of the function. In an attempt to overcome this
problem, the principle of consensus scoring has been
introduced, which aims to improve the predictability by
a combination of scoring functions.

Consensus Scoring

The concept of combining scoring functions to perform
a ranking of inhibitors has previously been described.
The CScore (Consensus Score) implementation in SYBYL,
version 6.6.2,26 uses a combination of five different
scoring functions to rank inhibitors. These functions are
F_Score (FlexX-Score), G_Score (based on the principles
of the GOLD scoring function), D_Score (based on the
principles of the DOCK scoring function), PMF_Score,
and ChemScore. All of these functions are considered
in this work. The concept of CScore is to identify those
ligand conformations that have the highest score in most
of the scoring functions. This is a rather simplistic
approach because all five scoring functions are assigned
the same importance and the ligands that generate good
scores in most of the scoring functions are considered
to be the best ligands. No attempt to quantitatively
estimate binding affinity is done in this context, and
often more than one solution is obtained.

An extensive review of the use of consensus scoring
has been performed by Charifson et al.27 The purpose
of their study was to examine whether the use of several
scoring functions could reduce the number of false
positives obtained by individual scoring functions. They
conclude that a combination of scoring functions sig-
nificantly enhances hit rates. Apparently, no attempts
have been made to combine the scoring functions in a
quantitative manner. Our approach has been inspired
by the concept of consensus scoring, but we decided to
proceed and replace the consensus principle with data
treatment using multivariate statistical methods.

The prediction of ligand conformation and binding
affinity is a general problem in the drug design process,
and having a reliable method to perform these tasks
would be of incredible value in all cases where the target
structure is known. Therefore, we have developed a
generally applicable method that can be used for a
diversity of protein-ligand complexes. It is likely that

a single precise scoring function could be developed for
a series of similar complexes, but it is a problem that
one never knows which scoring function to use for a
specific problem. However, when more scoring functions
are introduced in a concept like the one presented here,
it is possible to select the most appropriate functions
for a specific problem and thereby add value to the
predictions. Thus, the two main goals of this study were
(1) to develop a statistical method to select the bioactive
conformation between different docking results and (2)
to improve the estimation of binding affinity of ligands
to proteins. Both features are obtained by a combination
of scoring functions and use of multivariate statistical
analysis; a concept that will be referred to as multivari-
ate selection (MultiSelect) and multivariate scoring
(MultiScore), respectively.

Methods
1. Development and Evaluation of MultiSelect. 1.1.

MMP Enzyme Structures. Three MMP X-ray structures
were retrieved from the RCSB Protein Data Bank:13 MMP1
(PDB entry 1HFC),28 MMP2 (PDB entry 1QIB),29 and MMP3
(PDB entry 1HFS).30 The structures were energy-minimized
by a previously described approach31 using the SYBYL, version
6.6.2, molecular modeling software.26 The force field used was
AMBER, version 4.1,32,33 as implemented in SYBYL. The 1-4
nonbonded interactions were scaled by a factor of 0.5, and a
convergence criterion of 0.005 kcal/(mol Å) was applied. The
nonbonded cutoff distance was 8 Å. All hydrogen atoms were
included, considering a neutral pH for charged residues. The
partial charges on protein residues were AMBER95 all-atom
charges,32 and a full charge representation of both calcium and
zinc ions (+2) was used. The dielectric constant was set to 4,
representing an intermediate value between water and vacuum
conditions. A nonbonded approach was undertaken for ion
representation, and nonbonded parameters for zinc (van der
Waals (vdW) radius of 0.69 Å; ε ) 0.014) and calcium (vdW
radius of 1.6 Å; ε ) 0.1) were added to the force field.31,34,35

Distance constraints (2.045 Å and 100 kcal/(mol Å2) between
zinc and coordinating nitrogen atoms were applied in the first
steps of the energy-minimization procedure. A model substrate
(Pro-Leu-Ala-Leu-Phe-Ala) and a catalytically important water
molecule were modeled into the active site to avoid collapse of
the active-site pockets.31

1.2. MMP Inhibitor Structures. The inhibitors to be
docked in the MMP structures were taken from Porter et al.11

and Morphy et al.12 (see Figure 1 and Table 1) and built by
combining standard fragments from the fragment database in
SYBYL. The structures were subjected to a short energy
minimization using the Tripos force field36 (200 iterations) to
relieve any strain occurring in the structures.

1.3. Docking of MMP Inhibitors. Forty inhibitors were
docked into energy-minimized X-ray structures of MMP1,
MMP2, and MMP3, resulting in 120 different complexes. The
docking program GOLD, version 1.0,7 was used to position the
MMP inhibitors in the active sites of the proteins. GOLD is
based on a genetic algorithm, which has been shown to be very
effective in positioning ligands correctly into the active site of
a protein.7 GOLD takes protein flexibility into account to some
degree, but full side chain flexibility is not allowed. The active
site, into which the MMP inhibitors were docked, was defined
as a sphere (r ) 25 Å) around the catalytic zinc ion. The default
setup was used except for the torsional angles, where the
MIMUMBA torsional distributions were applied.37 The MMP
inhibitors are all right-hand side inhibitors (i.e., binding in
the primed side of the active site),38 and the binding mode was
anticipated to be very similar in all cases. Constraints were
applied on zinc coordinating atoms (distance between 1.5 and
2.5 Å and a force constant of 100 kcal/(mol Å2). In addition,
hydrogen bond constraints were applied for the two carbonyl
oxygens and two amide nitrogens binding to the backbone of
the enzymes (see Figure 2). Early termination was allowed if
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the top three solutions were within a root-mean-square devia-
tion (rmsd) of 1.5 Å, and a maximum of 10 solutions were
retrieved from each docking.

1.4. Docking of Ligands from X-ray Structures. Evalu-
ation of the selection procedure was done by docking ligands
from the structures 1BRA,39 1CBX,40 1CPS,41 1DBB,42 1ETT,43

1FKF,44 1MDQ,45 1MNC,46 1NNB,47 1TNG,48 1TNH,48 1TNI,48

1TNJ,48 1ULB,49 2DRI,50 2IFB,51 5P21,52 and 6TIM53 into their
corresponding X-ray structures using the docking program
FlexX.8 FlexX relies on a principle of building the ligand from
fragments into the active site. A maximum of 30 different
conformations were retrieved from each docking. The default
setup for docking by FlexX in SYBYL was used.

1.5. Scoring of Inhibitors. Eight different scoring func-
tions were applied to estimate the binding affinity of the
inhibitors to the protein. The scoring was performed using a
combination of SPL (SYBYL programming language) scripts
and Perl scripts. The scoring functions are the five functions
implemented in the CScore module of SYBYL, version 6.6.2.26

These functions are F_Score,8 D_Score,20 PMF_Score,25 G_Score,7
and ChemScore.19 In this context, Gasteiger charges were
applied to both proteins and ligands, as default in CScore. In
addition, the scoring function SCORE18 was used together with
the LUDI16,17 scoring function. The inhibitors were scored by
the GRID program, version 17,21-24 by summing up interac-

Table 1. Inhibitor Constants for MMP’sa

inhibitor R1 R2 MMP1 MMP2 MMP3 ref

1a CH2CH(CH3)2 7.8 0.33 25.3 11
1b (CH2)2C6H5 618 2.24 77 11
1c (CH2)3C6H5 203 0.062 8.3 11
1d (CH2)4C6H5 2 500 0.254 177 11
1e (CH2)3C6H4-4-CH3 921 0.08 8.24 11
1f (CH2)3C6H4-4-OCH3 1 530 0.06 4.16 11
1g (CH2)3C6H4-4-Cl 2 440 0.03 7.31 11
1h (CH2)3C6H4-4-F 296 0.06 13.5 11
1i (CH2)3C6H4-4-C2H5 5 120 0.10 5.44 11
1j (CH2)3C6H4-4-CF3 5 000 0.30 90.3 11
2a Cl (CH2)2CO2H 193 0.01 0.8 11
2b Cl (CH2)2CO2CH3 135 0.01 0.96 11
2c H (CH2)2C6H4-4-SO3H 942 0.59 81.5 11
2d CH3 (CH2)2X 455 0.01 6.26 11
2e Cl (CH2)4X 313 0.03 2.39 11
2f CH3 (CH2)4X 642 0.02 2.61 11
2g Cl (CH2)4N(CH3)2 1 050 0.05 22.2 11
2h CH3 (CH2)4N(CH3)2 313 0.02 5.87 11
2i Cl (CH2)2COX 319 0.02 1.38 11
2j CH3 (CH2)2C6H4-4-SO2NH2 329 0.01 2.98 11
2k Cl (CH2)2C6H4-4-SO2NH2 382 0.03 6.35 11
2l CH3 (CH2)2NHSO2X 385 0.01 2.75 11
2m Cl (CH2)2NHSO2X 302 0.01 1.73 11
3a H (CH2)2C6H5 25 000 18.9 701 12
3b H (CH2)2CO2H 22 100 46.5 952 12
3c H (CH2)2X 100 000 812 8400 12
3d CH3 (CH2)2C6H5 17 000 2.5 277 12
4a H (RS) (CH2)2C6H5 21 100 10 834 12
4b H (SS) (CH2)2C6H5 20 000 210 20000 12
4c H (CH2)2CH4-4-SO2NH2 40 200 6.4 952 12
4d H (CH2)2CO2CH3 57 800 6 1470 12
4e H (CH2)3CONH2 28 400 3.06 1090 12
4f CH3 (CH2)2C6H5 22 100 1 472 12
4g CH3 (CH2)2C6H4-4-SO2NH2 47 800 0.9 384 12
4h OCH3 (CH2)2C6H4-4-SO2NH2 100 000 1.83 1110 12
4i Cl (CH2)2C6H4-4-SO2NH2 55 000 1.03 358 12
4j CH3 (CH2)2CO2CH3 41 400 1.17 353 12
4k CH3 (CH2)2CO2H 100 000 3.82 321 12
4l CH3 (CH2)4X 100 000 10.3 1600 12
4m H H 100 000 123 3120 12

a All data are Ki values in nM. See Figure 1 for formulas.

Figure 1. Structures of inhibitors docked into the active sites
of MMP1, MMP2, and MMP3. See Table 1 for description of
substituents R1 and R2.

Figure 2. Schematic representation of the binding of a
hydroxamate inhibitor 1a to an MMP. The zinc-inhibitor
contacts and hydrogen bond interactions are depicted as dotted
lines.
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tion energies for the individual inhibitor atoms. GRID allows
protein side chain flexibility to be taken into account, and both
approaches have been used. However, no significant differ-
ences were observed. The results presented here were obtained
with the nonflexible approach. The LUDI scoring function has
been directly implemented in SYBYL using SPL.54 SCORE and
GRID are external programs, which were automated using
SPL and Perl scripts, respectively. The scores obtained directly
from GOLD were also considered to examine if this figure
correlates with binding affinity, which of course would be
preferable. However, the GOLD score was not included in the
MultiScore concept.

1.6. Principal Component Analysis of Docking Re-
sults. A single conformation of each MMP inhibitor was
selected by analyzing the obtained scores from the eight
scoring functions by principal component analysis (PCA) (see
Figure 3). For this purpose, the SIMCA-P, version 8.0, statisti-
cal software was used.55 All variables were scaled to unit
variance and centered. The model quality was expressed by
the parameters R2 (the explained variation) and Q2 (the
predicted variation). The obtained model was inspected for the
presence of strong outliers, and if present, these would be
excluded from the data set. An initial PCA model based on all
scoring functions was derived. This model was improved by
excluding scoring functions of minor importance, until a final
model with one principal component was derived. The PCA
model was used to predict scores by projection on the first
principal component for all ligand conformations. Because the
highest predicted score could be anticipated to correspond to
the bioactive conformation of the ligand, a single ligand
conformation was selected in each case. In addition, the PCA
would reveal, if different scoring functions were contributing,
similar information.

1.7. Equations Used. Formulas for R2 and Q2 are given
below:

Here, yexp is the experimental value and ymean is the average y
value.

When R2 was calculated, ypred is the value predicted by the
model. When Q2 was calculated, ypred is the value predicted
when the data have been grouped and partial models from the
reduced data sets (one group omitted at a time) obtained. The
omitted data were used as a test set, and Y values were
predicted. Several parallel models were obtained, and these
were used for the calculation of Q2.

The same procedure was performed for evaluation of PCA
models except that y was substituted by x in the equations.

2. Development of MultiScore. 2.1. Partial Least-
Squares Projection to Latent Structures. The eight scores
for each of the MMP complexes selected by MultiSelect were
extracted and correlated to the experimentally determined

binding affinities,11,12 using the SIMCA-P software55 to perform
a PLS analysis. All the results from the scoring functions were
defined as X values, and the experimental pKi value was
defined as the Y variable. Similar to the PCA, the values were
autoscaled and the model quality expressed by R2 and Q2.
Selection of variables was performed using the VIP value
(variable influence on projection parameter). This parameter
takes into account the amount of explained Y variance of each
dimension. A cutoff value of 0.8 was defined for discrimination
between important and unimportant predictors. In addition,
the information obtained from the PCA was used to identify
variables contributing similar information, and on this back-
ground, the final variables important for the model were
selected. The statistical significance of the estimated predicted
power was described by the response permutation testing
procedure as implemented in SIMCA-P. In this procedure, the
X data were left intact while the Y data were permuted to
appear in a different order. A PLS model was fitted to the
permuted Y data, and R2 and Q2 values were computed for
the derived model. This procedure was repeated 10 times,
resulting in 10 different models. The obtained R2 and Q2 values
were plotted as a function of the correlation coefficient between
original and permuted response data. A valid model would
have an intercept for R2 below 0.3 and an intercept for Q2 below
0.05.56

2.2. Protein-Ligand Complexes from the Protein Data
Bank. A diverse training set consisting of 120 protein-ligand
complexes was retrieved from the RCSB Protein Data Bank.13

Each of the complexes were divided into the protein part and
the ligand part. The atom types of the ligands were manually
checked. No geometry optimization was performed because the
ligand conformation found in the complex was assumed to be
the bioactive conformation. All water molecules were deleted
from the protein structures except for structurally important
water molecules. Metal ions were retained in all cases. All
hydrogen atoms were included considering a neutral pH for
the charged residues. The binding affinities of these complexes
were estimated by use of the eight scoring functions and
correlated to the experimentally determined values.18 The
results were analyzed using PLS as described above. A subset
of these complexes was used for evaluation of MultiSelect.

Results and Discussion

Selection of a single ligand conformation, which is
believed to correspond most closely to the bioactive
conformation, was the first challenge of this study. The
selection was performed assuming that the best inhibi-
tor conformation corresponds to the structure with the
most favorable binding energy. This is a common
anticipation in the scoring functions, and because this
concept relies on the performance of these, this antici-
pation will also be used in this context. As previously
mentioned, the docking programs generate several
ligand conformations, but often the ranking of these,
and thus the identification of the correct ligand confor-
mation, is not satisfying. In the past years several new
scoring functions have been introduced that claim to be

Figure 3. Procedure used to build the X matrix for MultiSelect. For each enzyme-ligand complex (MMP data set, 3 enzymes
and 40 inhibitors) a number of dockings were performed (MMP data set, 10 conformations/complex), yielding the 1200 enzyme-
ligand conformations. Each row represents the scoring with the eight scoring functions, resulting in a total of 1200 × 8 data
points.

R2 ) 1 - ∑(yexp - ypred)
2

∑(yexp - ymean)2

Q2 ) 1 - ∑(yexp - ypred)
2

∑(yexp - ymean)2
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able to handle this problem. In addition, these scoring
functions should be able to make improved predictions
of binding affinities, a feature that is also considered
in this context. Instead of developing new scoring
functions, we have used already available scoring func-
tions in a novel way.

Selection of Bioactive Ligand Conformation. The
docked MMP inhibitors were scored using the eight
scoring functions mentioned above. The output from
these functions was analyzed using PCA, and initially,
a model with three principal components was obtained.
No strong outliers were detected, and therefore, no
observations were excluded from the data set. The
possibility of obtaining a one-component model by
excluding two of the scoring functions from the initial
model was examined by excluding D_SCORE and
G_SCORE from the model because these were not well
accounted for by the first principal component (see
Figure 4). A second PCA was therefore performed using
the remaining six scoring functions, resulting in a two-
component model. This led to exclusion of the Chem-
Score function, and a third model was derived on the
basis of five scoring functions (see Figure 4). The
exclusion of the three scoring functions mentioned above
was also supported by the finding that these functions
had the weakest correlation to experimental data. The
PCA of the results from the remaining five scoring
functions (GRID, LUDI, SCORE, F_Score, and PMF-
_Score) resulted in the desired one-component model
with R2 ) 0.73 and Q2 ) 0.59. The contribution of the

five scoring functions to this model is shown in the lower
part of Figure 4. Using this model, the binding of the
docked conformations was predicted on the basis of a
quantitative combination of the scoring functions. As
the data were normalized, the output from the model
did not correspond directly to either the binding energy
or the pKi, but still, the highest predicted value indi-
cated the best binding and was therefore assumed to
correspond to the bioactive conformation. In contrast to
consensus scoring, this approach identifies a single
solution as the bioactive conformation. Comparing the
results from this study with the results obtained using
the CScore function as implemented in SYBYL, version
6.6.2, it was found that in 46% of the cases CScore
identified solutions different from those found by Mul-
tiSelect, and in only 25% of the cases CScore identified
a single conformation that was identical to the confor-
mation found by MultiSelect. This is most likely due to
CScores’ emphasis on five scoring functions, of which
three are excluded from MultiSelect. At least in this
case, these three functions were not useful for predic-
tions. From analysis of the results obtained from the
consensus scoring method (CScore), it was revealed that
in 48% of the cases CScore suggested more than one
solution.

To evaluate the selection procedure, 18 inhibitors with
known binding conformation were docked into their
corresponding protein structures. The selection proce-
dure was evaluated, comparing the selected conforma-
tion with the ligand conformations in the X-ray struc-
tures. The ability to select a docked conformation, which
resembles the conformation in the X-ray structure,
would be the ultimate goal of this procedure. The
evaluation was performed on various protein-ligand
complexes to show the generality. The structures con-
sidered were 1BRA, 1CBX, 1CPS, 1DBB, 1ETT, 1FKF,
1MDQ, 1MNC, 1NNB, 1TNG, 1TNH, 1TNI, 1TNJ,
1ULB, 2DRI, 2IFB, 5P21, and 6TIM (see Figure 5). The
docking procedure produced a maximum of 30 solutions
(conformations), and the selection of conformations was
done using the PCA model derived for the MMP’s. By
comparison with the ligand conformations present in the
X-ray structures, an indication of the reliability of the
selection procedure was obtained. The rmsd’s between
the ligand conformation in the X-ray structure and the
different solutions suggested by the docking program
are depicted in Figure 6. It is observed that the selection
procedure in all cases selected a conformation with a
low deviation from the conformation in the X-ray
structures (see Figure 6 and Table 2). The order of the
conformations reflects the F_Score (FlexX) ranking.
From Figure 6 it is also revealed that the poor correla-
tion between conformations selected by CScore and
conformations selected by MultiSelect described above
could be a special case for the MMP’s. The only case
where CScore and MultiSelect generated very different
results was for 1MNC, which is an MMP structure. In
the other proteins, CScore suggested at least one
reasonable ligand conformation among the possible
solutions. Still, the identification of several possible
solutions is a severe problem when using the CScore
method, and in this context, MultiSelect has a major
advantage.

Correlation to Experimental Data. Using a single
scoring function to quantify ligand binding is often not
enough. This is illustrated when considering the MMP

Figure 4. Explained (R2) and predicted (Q2) variation by the
first principal component: (A) initial model with all eight
scoring functions; (B) model after exclusion of D_Score and
G_Score; (C) final model after exclusion of ChemScore.

2338 Journal of Medicinal Chemistry, 2001, Vol. 44, No. 14 Terp et al.



inhibitor conformations obtained by docking. Selecting
the conformation that each individual scoring function
regards as the best solution and correlating the corre-
sponding scores with the experimental values result in
correlation coefficients i between 0 and 0.7 for the
different scoring functions (see Table 3). Therefore, we
examined whether a combination of the results from the
scoring functions could clarify the picture. The solutions
selected by MultiSelect were analyzed using PLS analy-

sis of the results from the scoring functions. A model
including all scoring functions was developed, but three
of the scoring functions (D_Score, G_Score, and Chem-
Score) did not contribute significantly to the model (see
Figure 7). A new PLS analysis was performed using the
five remaining scoring functions. A one-component
model was obtained with R2 ) 0.78 and Q2 ) 0.78 (see
upper part of Table 4). This implies both a good
correlation and, more importantly, a very good predic-

Figure 5. Ligands from X-ray structures of 18 different protein-ligand complexes used for evaluation of MultiSelect.
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tivity of the model. In addition, the internal evaluation
also implies a valid model. The correlation between the

observed experimental binding affinities and the pre-
dicted binding affinities (pKi’s) is shown in Figure 8.

The reason for the poor performance of three of the
scoring functions is not clear. The G_Score is mainly

Figure 6. Result of the MultiSelect evaluation. The rmsd values between X-ray ligand conformations and conformations obtained
by docking. Conformations selected by MultiSelect are indicated by arrows, and conformations selected by CScore are depicted as
triangles.

Table 2. The rmsd between X-ray Ligand Structures and the
Conformations Selected by MultiScore, F_Score, and CScorea

MultiSelect F_Score CScore

1BRA 0.36 1.13 1.13; 0.36; 1.95; 1.99; 1.21; 1.65;
1.19; 1.70; 1.68; 2.01; 0.51;
0.59; 1.58

1CBX 1.66 1.11 1.11; 1.68; 1.66; 1.27
1CPS 1.08 6.52 1.08
1DBB 0.88 0.77 2.77; 0.88
1ETT 3.71 4.66 3.78
1FKF 0.98 0.98 0.98; 0.91; 0.89; 0.97; 0.92; 0.92;

1.00; 0.98
1MDQ 0.72 0.72 1.28; 1.21
1MNC 1.74 1.70 6.50; 6.48
1NNB 0.61 0.61 0.61; 0.97
1TNG 0.72 1.93 1.93; 1.86; 2.13; 1.00; 0.66
1TNH 0.56 0.86 1.80; 1.75; 0.99; 0.88
1TNI 3.01 0.82 3.01
1TNJ 1.79 0.93 1.79; 0.96; 1.61
1ULB 0.65 0.65 0.65; 0.71; 0.68
2DRI 0.33 0.33 0.33; 0.42
2IFB 1.32 1.22 1.24
5P21 0.94 0.94 0.94
6TIM 1.23 1.23 1.40; 1.51; 1.60

a Bold-faced numbers indicate where considerable differences
are observed between conformations selected by F_Score and by
MultiSelect.

Table 3. Regression Coefficients Obtained by Individual Use of
Scoring Functions for the 120 MMP-Inhibitor Complexes (See
Text for Details)

scoring function R2

SCORE 0.66
LUDI 0.41
GRID 0.57
F_Score 0.73
PMF_Score 0.55
ChemScore 0.12
G_Score 0.12
D_Score 0.00

Table 4. Statistical Quality of the MMP and X-ray Modelsa

model
no. of

components
R2

(overall)
Q2

(overall)
R2

(intercept)
Q2

(intercept)

MMP 1 0.779 0.778 -0.04 -0.06
X-ray 2 0.678 0.667 -0.03 -0.06

a R2 (overall) is the explained variation of the model, while Q2

(overall) is the predictive power. R2 and Q2 (intercept) are the
intercepts with the y axis after permutation of the Y data
(experimental data) (see Methods for further details).
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useful for estimating binding affinities for systems when
there are possibilities of hydrogen bonding between
ligand and protein.7 This is certainly the case for the
MMP-inhibitor complexes, but the result could be
impaired by the fact that most of the inhibitors contain
similar possibilities for hydrogen bonding, and the
differences between them do not rely on this feature.
With respect to D_Score, no reason for the poor perfor-
mance is obvious. The last scoring function to be
excluded from the model is ChemScore. ChemScore is
based on the same principles as other empirical scoring
functions in this study (e.g., LUDI, F_Score, and SCORE),
and the performance of the method has been evaluated
in a similar manner. The scoring functions, which
contribute to the model, are the scoring functions
SCORE, LUDI, F_Score, PMF_Score, and GRID. The
coefficients are depicted in Figure 9.

To evaluate the general performance of the Multi-
Score concept, 120 different complexes were selected
from the RCSB Protein Data Bank (see Table 5) and a
model for prediction of the binding affinities was derived
in a similar manner as for the MMP’s. The data set was
split into a training set and a test set each consisting
of 60 complexes. A model was derived on the basis of
five scoring functions because three of the scoring
functions were excluded due to a VIP value less than

0.8. Use of this model for prediction of the binding
affinities for the complexes in the remaining 60 com-
plexes (the test set) resulted in a correlation to experi-
mentally determined data with R2 ) 0.68. A model
based on all 120 complexes was then derived, and in
this context, the only scoring function to be excluded
due to a low VIP value was the PMF_Score. However,
the presence of G_Score and D_Score did not improve
the model, and these scoring functions were excluded
too, leading to a model that was based on the same
scoring functions as the model derived from 60 of the
complexes. The model was then based on five scoring
functions, of which four were identical to the scoring
functions contributing to the MMP model. In this
context ChemScore was included in the model in
exchange for the PMF_Score function. The reason for
this is not obvious; the PMF_Score function should not
be less generally valid than the ChemScore function.
The model data are listed in the lower part of Table 4,
and the coefficients are depicted in Figure 10. The
negative coefficient for F_Score should not be inter-
preted as if this scoring function has a negative influ-
ence on the model. The scores from this function have
a tendency to be shifted toward positive values, and
therefore, the sign is reverted. It can be seen that the
model derived for the MMP’s is more specific and
accurate, but it can also be concluded that a general
model that is better than any single scoring function
has been derived for the diverse protein set. The
correlation between experimental data and predicted

Table 5. PDB Codes for Complexes Used for Development of the X-ray Modela

1AAQ, 1APT, 1APU, 1APV, 1APW, , 1CLA, 1CPS, 1DBB, 1DBJ, 1DBK, 1DBM, 1DR1, 1DRF, 1DWB, 1DWC, 1DWD, 1ETR,
1ETS, 1ETT, 1FKB, 1FKF, 1L83, 1LGR, 1MCB, 1MCF, 1MCH, 1MCJ, 1MCS, 1MDQ, 1MNC, 1NNB, 1PGP, 1PPC, 1PPH,
1PPK, 1PPL, 1PPM, 1RBP, 1RNE, 1SNC, 1TLP, 1TMN, 1TMT, 1TNG, 1TNH, 1TNI, 1TNJ, 1TNK, 1TNL, 1ULB, 2CGR,
2CTC, 2DBL, 2DRI, 2GBP, 2IFB, 2PK4, 2R04, 2SNS, 2TMN, 2XIS, 3CLA, 3CPA, 3FX2, 3PTB, 3TMN, 4CLA, 4FAB, 4TIM,
4TLN, 4TMN, 5ACN, 5ENL, 5TIM, 5TLN, 5TMN, 6APR, 6CPA, 6ENL, 6TIM, 6TMN, 7DFR, 7EST, 7TLN, 8CPA, 8XIA,
1DHF, 1FBP, 1HSL, 1LYB, 1RUS, 1THA, 1XLI, 2AK3, 2YPI, 3GAP, 4DFR, 4XIA, 5XIA, 6GST, 7TIM, 9AAT, 9ABP

a The last 17 complexes in the table are dimers

Figure 7. The variable influence on projection (VIP) param-
eter shown for the initial MMP model including all eight
scoring functions.

Figure 8. Calculated MultiScore as a function of the observed
binding affinity for 120 MMP-inhibitor complexes.

Figure 9. Regression coefficients of scaled and centered
variables (scoring functions) for the MultiScore MMP model.

Figure 10. Regression coefficients of scaled and centered
variables (scoring functions) for the MultiScore X-ray model.
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values with R2 ) 0.68 and Q2 ) 0.67 is depicted in
Figure 11. The corresponding correlations between
experimental data and the scores obtained by the
individual scoring functions are listed in Table 6. The
scoring functions have been derived on the basis of
different principles and sets of data, and thereby their
predictions will be most accurate when predicting
something that the functions are trained to predict.
Regarding the differences in important scoring functions
in the two cases examined, this could of course be a
result of different data sets.

To examine whether the model based on the X-ray
structure complexes could be used in general, this model
was used for prediction of the binding energy for the
MMP ligands to the MMP’s. The correlation was still
very good using this more generally applicable model
(R2 ) 0.60). The prediction of the MMP ligand binding
using the two different models is summarized in Table
7. This indicates that in many cases where sufficient
data are not available to develop a specific model, the
general model can generate meaningful results. This is
a major strength of this principle because it is not
necessary to develop a new model for each new series
of complexes when a rough estimation of the binding is
the primary intention. However, if a more precise
estimate is wanted when estimating binding data for
ligands of a specific enzyme family, this work has shown
that a more specific model could solve this problem. The
models are very fast to derive, and therefore, it is easy
to develop new models for different proteins. However,
this work has also shown that a general model could be

used as a first approximation, improving the estimating
power compared to the individual scoring functions.

Conclusion
A new method for selecting inhibitor conformations

obtained from docking studies is described. This method
could be used for the selection of a single ligand
conformation, which most probably will resemble the
bioactive conformation. The method was developed
using 120 MMP complexes and evaluated by 18 com-
plexes selected from the RCSB Protein Data Bank.
Extending the principle of consensus scoring in a
quantitative statistical manner has led us to introduce
the MultiSelect principle. This method relies on PCA
and is able to identify a single ligand conformation
among different docked conformations that resembles
the bioactive conformation. In the second part of this
article, we have used PLS analysis to combine different
scoring functions in the MultiScore concept, and in that
way we have improved the prediction of binding affinity.
It can be concluded that it is possible to develop a model
encompassing a variety of different complexes and still
be able to obtain an improved score relative to the scores
obtained by individual scoring functions. However, if
more accurate predictions are desired, a more specific
model could easily be derived. When the principles of
MultiScore are used, this is a very fast and feasible task,
and therefore, this approach should have a great
potential to be included in the process of database
screening.
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